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Abstract

A common theme in the history of statistics is the desire to know the true value of a quantity that can only

be measured with error. Statistical inference therefore concerns the numerical accuracy of beliefs. In

many natural and social sciences inferential methods are dominated by the school of frequentism, which

arose early in the 20th century. In this paper I argue, following Andrew Hartley, that frequentism

embodies a reductionistic motive whereby beliefs are reduced to mathematical inequalities arising from

the numerical nature of data. The problems of this reductionistic approach, however, tend to elicit a

humanistic reaction in the "indirect frequentist" approach to inference, where expert judgement intervenes

in arbitrary ways. A more promising alternative has long been offered by the Bayesian school of

statistical inference. Again following Hartley, I will argue that the Bayesian paradigm, in which inferences

are explicitly based on prior beliefs, is a logically and experientially coherent approach to inference.

Because it is not inherently reductionistic, I will also argue that it does better justice to the multi-faceted

nature of reality and is therefore more consistent with a theistic worldview as advocated by the

neocalvinist Christian tradition.

Introduction

The science of statistics has diverse origins, but a common theme is the desire to know the true value of

a quantity that can only be measured with error, and to use this knowledge for technical purposes

involving decision-making. The discipline of statistics therefore concerns both the accuracy of beliefs and

the justification of actions, and is now widely used in diverse areas of science, engineering and policy.

This paper concerns the first of these two goals: inference. The approach to statistical inference that

currently predominates in many natural and social sciences is based on the school of frequentism, which

arose early in the 20th century in the context of evolutionary biology. The older tradition associated with

Bayesian inference, however, concerns the modification of prior beliefs based on the evaluation of new

data. This paper argues that not only does the Bayesian approach reflect everyday common reasoning,

but it is also more logically coherent and more consistent with a Christian theistic worldview.

First I will offer a definition of “religious belief”, to which I return at the end of this paper in assessing

different approaches to statistics with respect to a Christian theistic worldview. Next I give a very brief

introduction to the purpose of statistical inference, outlining the Bayesian and frequentist approaches.

Then I give two short primers on the approaches each of these schools may take for dealing with a simple

inference problem, pointing out some of the key assumptions involved. Finally I mention ethical and

practical concerns, and discuss more explicitly the religious nature of these approaches.
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Religious beliefs

Defining “religious” is notoriously difficult. A simple but broad definition of “religious belief” would be any

basic belief that is foundational to thinking and action. A more technical definition that I wish to consider

is Roy Clouser’s (Clouser 2005): a belief is religious if it concerns what a person holds (consciously or

not) to be ultimately and non-dependently real – which for Clouser defines “the divine” for that person – or

how one relates to that divine. We might consider how Christian theology proposes the God revealed in

Jesus Christ to be before all things, the source of all creation while being separate from it, whereas faiths

classified as “pagan” seem to propose that divine spirits are located within some part of the world. More

pertinently for us, Clouser’s view entails that philosophical theses about the nature of reality are also

religious beliefs. In particular, reductionistic ontological claims are religious, in that they posit one aspect

of reality as constitutive of another. I realise that that definition of “reductionistic” may need clarification; I

mean by it to describe radical claims that some aspect of experience can be explained in terms of another

aspect of experience, when the two aspects have different statuses in everyday thought (e.g. they can

appear in separate considerations used in decision-making, like feelings, economic reasons and law) and

in discourse (e.g. the vocabulary of physical forces is rarely conflated with the vocabulary of sensations,

however much we may be told that sensations are really neural impulses). I realise I have not given an

absolute definition, but this may be appropriate, because I also suggest that “religious” may apply to any

claim that turns out to contravene a belief genuinely held by someone about the ultimate nature of reality.

A word must be said about the background to Clouser’s definition. The philosophy of the cosmonomic

idea, or Reformational philosophy, is a tradition drawing on the work of Herman Dooyeweerd

(Dooyeweerd 1953), which recognises that all scientific work is based on abstractions from human

experience: the consideration of a certain type of properties that pertain to things or situations

encountered in lived experience, to the exclusion of other types of properties (Strauss 2011). So, for

example, the science of physics concerns the physical properties of things – and, we might say, the

physical aspect of experience – to the exclusion of biotic, sensory, linguistic, social and other properties

and aspects – which are each the concern of another kind of science (Clouser 2005). However, no-one

can conceive of a physical (or any other) property of a thing in isolation from any other aspect

(Dooyeweerd's "transcendental critique", Clouser 2005), and the practice of science invariably involves

human functioning in all kinds of aspects simultaneously. For present purposes, we particularly note that

most natural sciences depend upon numerical analyses (even though mathematics is the proper science

that analyses numerical relations per se) and that all scholarship is concerned with the accuracy of

opinions and convictions, insofar as these pertain to the goal of knowledge. Clouser’s definition of

religious beliefs, then, is made in respect of the observations that (i) Christian interpretations of the Bible

generally affirm that the triune God is behind all lived experience, yet do not show any aspect of the

created order to belong unambiguously to God’s true nature; and (ii) the history of Western thought may

be characterised by a series of claims about the nature of reality being ultimately located in a particular

abstracted aspect (e.g. claims that everything is ultimately numerical / physical / sensory / logical /

linguistic / etc) (Dooyeweerd 1979). We might also find that (iii) a claim that fundamental religious

convictions lie behind scholarly controversies is compatible with the depth of paradigm conflicts seen in

many disciplines, and also theologically compatible with Protestant teaching on the radical nature of sin

and the power of idolatry.

Knowledge and statistical inference

How do we use observations to learn about the world? Any scientific or pre-scientific understanding of

the world posits something like general laws or kinds, spirits or intentions, natures or essences that cause



predictable patterns, yet our flow of consciousness only takes in a single stream of perception, and no

matter how many situations and events we observe, we do not observe the causes behind them. Any

model of the world is said to be underdetermined by any experience, and knowledge results from trying to

harmonize ideas with new experience, in a cyclical process of learning. The science of statistics helps

with this challenge when quantifiable ideas need to be tested against numerical data that are influenced

by extraneous factors that cannot be controlled. So the challenge of statistical inference is to use “noisy”

data to develop more accurate knowledge about some quantitative law or pattern. We may wonder how

this relates to basic, religious beliefs. I will argue for a cyclic process of refinement of a community’s

scientific knowledge that is analogous to – indeed a part of – the cyclic process of development of a

person’s basic, or religious, beliefs (Fig. 1). In modern scientific learning, statistical inference plays an

increasingly important role, and I will argue that it depends upon prior scientific beliefs in an essential way

that is disputed by some of the paradigms that I will sketch below.
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quantitative scale. So we find an appropriate statistic, r, which describes the trend in the relationship

between my variables and is mathematically defined so as to be independent of the number of data

(degrees of freedom) used in calculating it. If we say “r=0”, we have a precise, quantitative “null

hypothesis”.

3. At some stage, data are obtained. In our case we cannot experimentally manipulate L while measuring

S, so an alternative is to observe values of S and L together at appropriately-selected natural instances

(probably different spatial locations in the world). Our statistic r is then calculated, which is a maximum-

likelihood estimator of the true value.

4. In general, the estimate of r will not be exactly zero. At this point, if not already, we may suspect that

the null hypothesis was a wildly improbable dream, and conclude that the research hypothesis has been

supported. But the problem is this: the apparent support might still be consistent with an imaginary world

where r really is zero but measured values of r take non-zero values because of the noisiness of the data.

So we proceed to ask how significant the departure from zero is, making use of the variability in the data.

5. The statistician therefore refers to the expected probability distribution (Fig. 3) of values of r that might

be obtained from random samples of new data with the same intrusion of noise, if the true value of were

zero (as in the null hypothesis). Even extreme values can be expected to occur with low frequencies, so

a small error rate α is specified, which is to be an acceptable risk (conventionally 5%) of rejecting the null 

hypothesis were it actually true. The statistician then identifies the range of values of r that would be

most likely to occur under the null hypothesis, so as to account for a proportion 1-α (e.g. 95%) of the 

possible outcomes. The limits to this range are the critical values of r.

6. By comparing the observed value of r with the critical values, it is possible to decide whether the data

from which it was derived would be reasonably likely under the null hypothesis. The statistician knows

how unlikely it is that values outside the critical range would occur if the null hypothesis were true. So the

conclusion of the analysis is a judgment about how unlikely the observed data would be if the null-

hypothesis were true – which is expressed as a so-called P-value. The point is carefully made to

students of statistics that we have a probability of data given a made-up parameter value, not a

probability of a parameter value given the data.

r

Fig. 3. A frequency graph showing the range

of most-likely values that a statistic r might

take under a null hypothesis that r equals 0.

The region spanned by the arrows is the 95%

confidence interval; values outside this range

are expected to occur 5% of the time if the

null hypothesis is true. The short dotted

vertical line indicates a maximum-likelihood

value for r estimated from some data,

showing that the null hypothesis gives these

data a low probability (< 5%). We can go a

step further and calculate the so-called P-

value: the exact probability of obtaining such

extreme data under the null hypothesis.
0
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7. That kind of conclusion seems logically valid and impressively impartial, but its practical value is not

obvious – we want to make inferences about the parameter (the actual relationship between latitude and

species richness), and here we only have a conclusion about our data, based on a pipe-dreamed null

hypothesis. However, users of the approach normally make an intuitive leap here: If the data we

observed would be very unlikely under a null hypothesis, then surely the null hypothesis is unlikely to be

true? Typically the conclusion is subtly re-phrased to say that the data are “inconsistent” with the null

hypothesis, as if the conditional probability statement worked both ways.

That primer for frequentism was fairly mechanical. It might even sound as though a computer could be

made to do science this way. But there are some problems, which lead Andrew Hartley (Hartley 2007) to

distinguish what he calls the “direct frequentist” paradigm from an “indirect frequentist” paradigm for

statistical inference. This hinges on the role that is granted for intervention of expert judgement.

Consider my analysis of the relationship between latitude and number of tree species. I find that the

estimate of r summarising my data is so far from zero that the probability of getting data like these under

the null hypothesis is estimated at 0.06. This does not meet the conventional threshold criterion of 0.05

because the 95% of values that would be most likely if r = 0 is quite broad. I’m disappointed with my lack

of “discovery” – but then I manage to find a large amount of additional data from monotonous forests in

the far north, and by increasing my sample size, I arrive at a new P-value of 0.007. The change has

occurred not because my new estimate of r is very different, but because the 95% confidence envelope

has shrunk. So now I can tell the world that species richness varies with latitude – it decreases as you go

further north. Now, for the next stage in my investigation I want to determine whether species richness

actually declines with distances both north and south from the Equator, or from some other latitude close

by. So I set up a new null hypothesis for L*, the latitude of maximum species richness: L* = 0°. And

even with my expanded data set, I cannot quite reject this, because P = 0.05. So I will have to use L* = 0

for the calculations in the next stage of my analysis, which will be about how the area of the sampled

region affects the number of species. However, I cannot help noticing that my actual maximum-likelihood

estimate for L* was 4° S, and the only published paper I can find that estimates the same parameter,

although based on all kinds of plants rather than just trees, reports it to be 6° S. Surely I could justify

using my exact maximum-likelihood estimate rather than 0, to improve the accuracy of my subsequent

analyses? After all, there is rather little land-mass on the Equator itself, and much more just a few

degrees south, which may support a greater diversity of habitats and species.

This example shows how expert opinion tends to intervene in a frequentist analysis, in various ways. So

one key reason we might not trust a computer to do science under frequentism is that arbitrarily-small

effects, so long as they are real, become statistically significant given a large enough sample size. All

sorts of quantities in the world may be linked to each other in very weak and indirect ways - like the

density of gold and the time of year when it is measured – so one could argue that most null hypotheses

are probably false. Paradoxically, therefore, scientific progress can be made by the rejection of null

hypotheses which are ultimately trivial. In practice, therefore, the concept of “scientific significance” is

important. One reason why the frequentist paradigm works so well may be that there is intuition (tacit

knowledge) among practitioners about the minimum size of an effect that would be meaningful in the

context of the research hypothesis being considered. This feeds into intuition (or it can be formalised with

methods known as power analysis) of how to achieve appropriate statistical power (e.g. by controlling

sample size) to detect an effect of about this size or larger.

Another key justification for expert intervention that appears in the above example is the inferential weight

that may be given to prior studies and theoretical expectations. In fact, given the essential roles for
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expertise throughout the research process, a sceptic might categorise even the most ardent proponents

of conventional, direct frequentism as indirect frequentists. Perhaps there is no chance of computers

becoming the scientists of tomorrow - but instead we may have unaccountable geniuses following whims

of inspiration that lead them to make authoritative pronouncements about “scientific truth” – with

impeccable statistical validity!

A more logical problem is the inferential sleight of hand that seems necessary in order to get any useful

conclusion from a frequentist analysis. Conspiracy theorists can have a field day. If there were no

gremlins playing bowls in my attic, it seems very unlikely that I would hear the regular bumping noises I’ve

just noticed! Or: if we were in Wales, it’s unlikely that we would be having two dry days in a row...

Is there any alternative? Well, let’s go back to the good old school of inverse probability...

A primer for Bayesian inference

Here is how a Bayesian analysis typically proceeds. Again, I will point out some assumptions and

contrasts with the frequentist approach as we go...

1. We start in a similar way to the frequentist primer: a situation about which the researcher would like to

know more can be described by some measurable parameter. For example, species richness and

latitude are thought to be related to each other, and the parameter r can describe a relationship between

these variables S and L. Note, however, that we do not start with the black-and-white question of

whether or not such a relationship exists; our world picture and previous experience lead us to believe

that this relationship can be quantified, and our aim is to gain an improved estimate of r.

2. Thus we have some prior belief, however vague, about what kind of values the parameter r might take.

We don’t need a single precise value; we can use a probability distribution (Fig. 4). This is the prior

distribution of r, describing our uncertainty about its real value. In contrast to the frequentist approach, we

talk about subjective probabilities for different values of r. r itself has a single, real value of course, but

we don’t know it.

3. Data are collected in a Bayesian research programme, much as in a frequentist programme. The

more, the better!

4. The data are analysed by combining them with the prior for r in such a way as to give a new, posterior

distribution for r. Bayes’ Theorem states that the probability of condition A given condition B is the same

as the probability of condition B given condition A multiplied by the ratio between the prior probabilities of

the two conditions. Taking one condition to be a particular value of the parameter r (with prior

probabilities given by the prior belief) and the other to be the data observed (which may be said to have a

probability of one), we can calculate an improved, posterior probability for each parameter value on the

basis of the data observed (Fig. 4). (For a given parameter value, the posterior probability is simply the

prior probability multiplied by the likelihood of getting our observed data from that value.)
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The impact of religious beliefs in statistics

The four paradigms of statistical inference I have outlined (as identified by Hartley) differ radically in many

respects: what inputs they require, what role prior beliefs may have, how they consider unknown

parameters, what information they yield, how they lead to inference and decision-making, etc. It is clear

that there may be deep-seated logical and practical challenges to using each of these paradigms. These

considerations may suggest ethical reasons for preferring one or other approach. Indeed, I’ve shown

how the different approaches can give different conclusions in similar situations; specifically, direct

frequentism can be shown to give unreasonable conclusions in cases where prior information is clearly

important.

Besides all this, however, there are more fundamental questions to ask. The divergence of the

perspectives, together with the depth and persistence of controversy among their advocates, may

suggest that there is a religious dimension to their differences. This would widely be denied under

popular notions of “religion”. Let me therefore advance this thesis by laying out some of the fundamental

characteristics of the paradigms and noting the sense in which these are “religious” under the definition of

“religious beliefs” that I proposed at the start.

 Direct frequentism seeks to induce beliefs directly from mathematical quantities. Inference from data

to parameters, under this paradigm, is only achieved by making an intuitive but non-logical re-

interpretation of the formal conclusion of an analysis. Thus it appears to be reductionistic insofar as it

seeks to reduce beliefs to mathematical quantities (assuming that at least some people experience

their beliefs as not inherently mathematical in nature – which I do, for one).

 Indirect frequentism assumes an essential role for expert intervention in processes of scientific

induction without any need to formalise or constrain this intervention. The mathematical side of what

starts out as a numerical analysis is ultimately subsumed under the judgement of the expert. Thus

indirect frequentism (and arguably also direct frequentism at the point of inference from data to

parameters) attributes a determinative role for special human judgement, without formalising this. It

may be seen as a humanistic construal of reality in defiance of experience.

 Subjective Bayesianism acknowledges radical differences in people’s subjective beliefs, which are an

indispensable grounding point. Analysis proceeds according to clear mathematical principles that

appear to provide a legitimate way to combine numerical and fiducial aspects of human experience.

 Objective Bayesianism conflates mathematical and (fiduciary) properties at the start of an analysis,

which may be reductionistic as in the case of direct frequentism. Thus objective Bayesianism

substitutes mathematical equality for prior belief, arguably making a category error at the start of an

analysis.

It may clarify some of these points if we return to the analogy with the development of general knowledge

outlined earlier on (Fig. 1). If someone I do not know tells me something that surprises me, I consider it

less likely to be true than if someone I trust tells me something that broadly fits my prior beliefs. Thus,

arguably, our everyday assessment of information is informally “Bayesian”: the nature of our conclusions

from new information are heavily dependent on prior beliefs and the perceived reliability of the source of

the new information. Ironically, indeed, research in experimental psychology (a discipline which has

conventionally relied on direct frequentist inference from data) repeatedly argues for the importance of

prior assumptions in human perception [ref needed]. Even within the sciences that champion frequentist

approaches, then, we might argue that all inference (statistical and informal) is not just “indirectly

frequentist” but in fact “subjectively Bayesian”, though it be performed under a smokescreen of something

supposed to be more objective.
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I finish with a personal conclusion. Together, the above considerations mean that I take very seriously

the status of statistical science as a tool for refining and changing beliefs – both my own and other

people’s. Since I am not committed to the autonomy of mathematical reasoning for the generation of true

knowledge, I do not wish to use frequentist methods as a way of denying a role for genuine prior belief,

and I am concerned about the need for all stages of the inferential process to be properly acknowledged

and described – as well as the risk of drawing inaccurate conclusions by means of illogical inferential

protocols or inaccurate priors. However, there are practical challenges to adopting subjective Bayesian

methods. In presenting conclusions from a scientific study – such as my work on the latitudinal gradient

in tree species diversity – I seek to provide an analysis of the data that can be interpreted by a wide range

of audiences, whose prior beliefs I do not accurately know. The safest policy would be to present no

inferences other than my own, reducing the report’s conclusion to a personal testimony of modifications to

my own beliefs on the matter. But readers expect to be offered a stronger conclusion, one which

challenges them to make a certain inference too. So, for the time being, I am likely to follow conventional

analytical protocols, knowing that readers will ultimately draw their own inferences in any case.

This conventional “objectivist” approach perhaps runs into problems most seriously when a wider

audience is engaged. For example, scientific studies that are picked up by media channels often involve

their authors in anxiety about the interpretation of their conclusions by non-specialist audiences. I am

also concerned about teaching: that statistical inference is often taught in ways that encourage

reductionistic beliefs and the idolatries that ensue from them. This was part of my burden in revising an

advanced statistics course that I was appointed to teach to postgraduates at the University of Leeds

recently. Thus I can say that the development of my own Christian beliefs is starting to influence the way

I approach the teaching and application of statistical methods in the university and beyond. I hope other

scientists too will increasingly consider the presuppositions and faith commitments that shape their

inferential practices, and be prepared to examine them critically and openly, whether or not they would

agree with the analysis given here and by Andrew Hartley.
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